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I.​ Abstract 
 

This project investigates whether instilling inductive biases into large language models (LLMs) 
can improve their ability to represent and reason about complex historical events. We argue that 
effective event embeddings—capturing both semantic content and relational structure—are 
essential for advancing model understanding. Complex events, such as The Rebellion of 1923, 
consist of interdependent subevents, entities, and concepts, and are situated within broader causal 
chains (e.g., the assassination of Archduke Franz Ferdinand leading to World War I and 
subsequently the Paris Peace Conference). Capturing such semantic detail and causal 
dependency is critical for enabling socially grounded reasoning in LLMs. 

 
To address this challenge, we propose a hybrid architecture that integrates language and graph 
modalities. Semantic information is derived from dimensionality-reduced DistilBERT 
embeddings, while relational dependencies are modeled using Graph Neural Networks (GNNs) 
and Knowledge Graph Embeddings (KGE). Through ablation experiments across seven 
representation settings (KGE, GNN, DistilBERT, KGE+DistilBERT, GNN+DistilBERT, 
KGE+GNN+DistilBERT, and random+DistilBERT), we evaluate performance on binary 
classification using an HGB classifier and on link prediction. Results demonstrate consistent 
improvements, with classification robustness across random seeds and a ~26% accuracy increase 
in link prediction. 

 
This work points toward a deeper integration of computational methods with social science 
inquiry. By instilling inductive biases grounded in knowledge graphs, it offers a pathway to 
models that not only process language but also support the exploration of historical hypotheses 
and theories of societal change. 
 
II.​ Introduction 

  
Questions about how Language Models (LLMs) encode world knowledge are currently 
prevalent. Growing evidence indicates that LLMs acquire linear representations of space and 
time across various scales, showcasing their ability to structurally store temporal-spatial 
information. However, when prompted with factual knowledge, these models encounter 
challenges, such as hallucinations. To enhance LLMs' understanding of complex events and 
improve their reasoning skills, this research aims to focus on the fundamental level: event 
embeddings.  
 
Two key characteristics are considered in the context of complex events: semantic information 
and relationship information. First, events such as "The Rebellion of 1923" comprise numerous 
subevents, entities, and concepts that are interconnected, forming a crucial part of the event 
embedding. Second, events exhibit correlation and causal connections with other events, 
emphasizing the importance of capturing dependency relationships in a suitable representation. 
For example, the event “Assassination of Archduke Franz Ferdinand” caused “WWI”, which in 
turn caused “The Paris Peace Conference”. 
 
This research proposes a novel architecture that integrates language and graph modalities. 
Semantic information is stored in a dimensionality-reduced pre-trained DistilBERT embedding 
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for sentences containing event keywords, while relational information between events is captured 
using Graph Neural Networks (GNN) and Knowledge Graph Embeddings (KGE) trained on the 
dataset. 
 
I conducted ablation experiments to test which among the 7 representations (KGE, GNN, 
DistilBERT, KGE+DistilBERT, GNN+DistilBERT, KGE+GNN+DistilBERT, 
random+DistilBERT) perform with the best accuracy for two evaluation tests – one binary 
classification task using HGB classifier and a Link Prediction task. As a result, the proposed 
architecture that combines rich semantic information and interrelated causal relations 
demonstrates significant and consistent improvements in complex event representation. 
Classification based on the dataset that I constructed demonstrates a consistent improvement 
across each random seed test; the second evaluation through link prediction based on the 
synthetic negative edges sampled from the provided adjacency demonstrates a significant 
increase of around 26% accuracy score.  
 
III.​ Data 

 
Wikipedia Knowledge Base: Despite the impossibility of quantitatively establishing real causal 
relationships, a vast amount of professional annotations is available online. Wikipedia was 
chosen as the foundation for knowledge graph construction. On a Wikipedia page for a specific 
event, denoted as A, sections such as "Introduction," "Cause" (or equivalents like 
"Background"), and "Consequences" (or equivalents such as "Aftermath") are considered highly 
relevant. Specifically, the "Introduction" contains many keywords for enriching the semantic 
meanings of an event. Furthermore, the "cause" section contains events that caused A, and the 
"consequence" section contains events that are caused by A. Therefore, causally-linked events 
centered around event A can be easily extracted in this manner. 
 
Event Filtering through DistilBERT model: A complication arises when extracting events 
from the "Cause" and "Consequence sections." An example of a complex event is typically 
associated with hyperlinks on Wikipedia pages. However, not all terms with hyperlinks are 
events. For example, the "Assassination of Archduke Franz Ferdinand" includes real complex 
events like the "Secret Treaty of 1892" and "Austro-Hungarian ultimatum (23 July)," but also 
contains non-events like geographical terms such as "Danube" and country names such as 
"Germany." For the knowledge graph, only complex events as nodes are needed. Filtering out 
non-events is accomplished through a neural network for a classification task using DistilBERT 
pre-trained embeddings for inputs. The constructed neural network consists of 4 hidden layers 
with ReLU activation functions and an output softmax layer. The loss is calculated using 
negative-log-likelihood. After a small amount of labeling consisting of 150 events and 150 
nonevents and feeding them in as training and testing data, the network produced a test accuracy 
of 96.6%. 
 
Recursive Web-Scraping: The recursive web-scraping algorithm navigates each hyperlink, 
determining whether it represents a complex event through input into the neural network model. 
If classified as an "Event," the algorithm saves the keywords in its introduction into a 
corresponding CSV file and continues extracting more events until reaching a recursion depth of 
4. With two starting events – WWI and WWII –, the algorithm obtained 20,165 intercorrelated 
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events. I conducted several measures for data cleaning: I used RE to filter our irrelevant concepts 
and applied a second-time Event Classification network filtering. Furthermore, due to the noisy 
nature of web-scraped data, I detected a small amount of cycles in the adjacency list. Since cycle 
means invalid data in the context of event relations – if A causes B, B causes C, then C can never 
cause A – I cleaned up the nodes that are involved in the cycles by implementing cycle detection 
and removal algorithms. As a result, there are 19,221 intercorrelated events prepared for 
knowledge graph construction. 
 
During the recursive web scraping process, keywords of each complex event from the event’s 
introduction paragraphs were scraped and stored in CSV files to enrich the semantic meanings of 
the events. These keywords are later used as inputs for the language module and GNN node 
value. 
 

 
 
 
 
 
III. Model 
  
There are three major components in the architecture: DistilBERT Pretrained Sentence 
Embedding, trained KGE embeddings, and trained GNN embeddings.   
Lower-Dimensional DistilBERT Sentence Embedding: I organized relevant “keywords” 
stored in each event corresponding CSV file as inputs and obtained the sentence embedding. The 
sentence embedding has a shape of (300,768) for each event because I have max_length set to 
300 in the tokenizer 'sentence-transformers/stsb-distilbert-base’. Therefore, dim_reduction.py 
reduces the dimension of each event’s DilstilBERT sentence embedding to (256,). The 
dimensionality reduction is important for increasing computation and retrieval speed; it is also 
particularly important for this architecture: the trained KGE embedding has a shape of (200,) and 
the GNN has a size of (64,). In order to prevent the semantic meaning module from being overly 
predominant in dictating the embeddings and balance out the weights that the model has for the 
three embeddings, dimensionality reduction is a crucial step. 
  
Specifically, dim_reduction.py reproduces the “whitening” process developed by Su and etc. to 
reduce dimension. The author of the paper experimented on DistilBERT base & DistilBERT 
large and demonstrated that this methodology improved model performance on seven semantic 
textual similarity tasks, demonstrating that it greatly preserves semantic meanings while 
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removing unnecessary correlations in the data, constructing semantically meaningful but denser 
vectors.  
  
To make the data less redundant, the whitening algorithm obtains the average between the first 
and last layers of the pre-trained DistilBERT model to acquire relevant information syntactically 
and semantically. The compute_kernel_bias function processes vectors, calculates mean and 
covariance, applies SVD, and returns a transformation matrix and bias. Then, the 
transform_and_normalize function takes input vectors, a transformation matrix, and a bias, 
applying a linear transformation and L2 normalization to return normalized vectors. The 
normalization function independently standardizes input vectors. As a result of the 
transformation applied on the embeddings, the embeddings are reduced to shapes of (256,), 
which is more suitable for the architecture. 
  
Trained KGE embeddings:  The goal of KGE models is to embed the entities and relations 
including symmetric, antisymmetric, inversion, and composition into a continuous and 
low-dimensional vector space. Specifically, for event relationships, antisymmetric and 
composition relations are important to learn. For example, if eventA causes eventB, eventB 
causes eventC, then there are two conclusions one can draw: (1) eventB cannot cause 
eventA(antisymmetric); (2) eventA indirectly causes eventC (composition). The major 
component in KG training is the scoring layer: the scoring function assigns a score to the triple 
(event1, relation, event2), and the score should be higher if it is an existing statement. There are 
many developed score functions, including TransE, TransR, DistMult, ComplEx, RESCAL, and 
RotatE. Specifically, for the purpose of complex event representation learning, I applied 
ComplEx, which demonstrates better performance in capturing antisymmetric relations while 
maintaining a linear complexity. ComplEx uses the following scoring function: ℎ.T 𝑅𝑒(𝑑𝑖𝑎𝑔(𝑟)𝑡). 
Given the scoring layer outputs, during training, KG samples synthetic fake statements and uses 
the loss function of NLL and the logistic loss returns -1 for negative samples and +1 for the 
positive samples. 
  
I created a training dataset for KG training using ComplEx Model statement triples: I first wrote 
a script to extract chains from the cleaned adjacency list and constructed the triplets from the 
chains. After training for 300 epochs, reached a training loss of. The loss was at its minimum at 
around 300 epochs. The model achieves an 0.43 MRR, indicating that, on average, the reciprocal 
of the rank of the first correct prediction is 0.43. The average rank (MR) of the first correct 
prediction is 2177.93. The model achieves a Hits@10 score of 0.50, meaning that the correct 
prediction is included in the top 10 predictions 50% of the time. Hits@3: The Hits@3 score is 
0.45, indicating that the correct prediction is included in the top 3 predictions 45% of the time. 
Hits@1: The Hits@1 score is 0.39, signifying that the correct prediction is included in the 
top-ranked prediction 39% of the time. 
  
Trained GNN embeddings: KGE techniques encode the interactions between entities and 
relations through models that are not natively built for encoding graph structures. However, a 
novel family of neural architectures has been proposed to address this limitation and improve 
upon the performance. Therefore, I applied Graph Neural Networks (GNNs) to attempt to learn 
the latent representation of graph-structured data and enrich the graph modality. Furthermore, 
KG models only allow input data to be in the format of entity and relations as strings On the 
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other hand, GNN allows additional information to be put into the training and learning process. 
Specifically, GNN also requires the dataset to have additional node features, for which I inputted 
the 265-dimensional BERT-sentence embedding that captured the keyword information of the 
complex event. This is an attempt to let the GNN learn the patterns given potentially correlated 
keywords and semantic information between the nodes so that it can leverage both the graph 
structure and node features for capturing relationships and patterns in the data. 
  
I implemented an encoder-decoder structure for the GNN embedding learning. Specifically, the 
encoder is a neural network that maps nodes in a graph to low-dimensional vectors; the decoder 
maps the vectors back to the nodes. The encoder and decoder are trained jointly so that the 
vectors produced by the encoder can be used by the decoder to reconstruct the original graph. 
The loss function used to train the encoder-decoder is based on the idea that similar nodes should 
have similar embeddings. This loss function encourages the embeddings for similar nodes to be 
close together and the embeddings for dissimilar nodes to be far apart. The GNN undergoes 
optimization via iterative parameter updates to minimize the loss function, refining the neural 
network to produce embeddings that capture the semantic meanings. I trained for 200 epochs and 
decided to use the embeddings learned at epoch 30, where the loss stopped decreasing and 
started oscillating around 0.4338. 
 
IV. Evaluation Metric 
  
1. Classification on Hand-Constructed Dataset 
 
Test Dataset Preparation: From the chains that I extracted from the adjacency graph, I created 
three distinct datasets: close pairs, middle pairs, and distant pairs. Close pairs are direct 
neighbors; middle pairs are indirect neighbors with a directed path <= 6 edges; distant pairs are 
indirect neighbors that are extracted from the two ends of one chain. There are 8438 close pairs, 
8442 middle pairs, and 8442 distant pairs. To create negative examples, based on the asymmetry 
relationship of the events, I sampled from each of the three datasets and reversed the event 
ordering. To enhance the negative data, I also sampled unrelated events, which are events not 
from a consecutive chain, as the negative examples and have in total of 1777 pairs of unrelated 
events. I merged the unrelated events into the close_pair, distant_pair, and middle_pair and made 
them into JSON files. 
  
Benchmarking against Llama and GPT3-turbo: I used the constructed dataset of positive and 
negative examples and conducted prompt engineering to test the performance of GPT3.5-turbo 
and Llama to use their results as a general benchmark against the new representation. 
  
Specifically, I prompted GPT3-turbo with the following prompt: 'Did Event 1 directly or 
indirectly cause Event 2?' 'Event 1: {cause}, Event 2: {effect}. What is the Answer? Give me 
ONE WORD YES/NO RESPONSE!' GPT3-turbo achieves an accuracy of 51.2% across 2000 
sampled data from the merged dataset of close pairs, middle pairs, and distant pairs. For Llama, 
due to Llama’s inability to take from the instruction “give me a one-word response” and 
tendency for random generation. The prompt is as follows: 'I will give you some examples. 
Event1: Second World War, Event2: battle of the kerch peninsula \n Answer: Yes. \n. Event1: 
battle of the Kerch peninsula, Event2: second world war\nAnswer: No. \n. Event1: invasion of 
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Sicily, Event2: palestine war\nAnswer: No. \n'.'Event1: second world war, Event2: battle of 
moscow\nAnswer: Yes. \n'. Llama achieved an accuracy of 0.49 in 2000 promptings. 
  
Ablation Experiments: I am using the classifier HistGradientBoostingClassifier because HGB 
classifiers apply the concept of binning that is most relevant to Decision Tree classification 
algorithms by grouping with histograms; it is easy and very efficient to train. During test time, I 
split the dataset that is merged from close pair, middle pair, and distant pair using a test_size of 
0.2, as I evaluated that this will generate around 50% of negative samples and 50% of positive 
samples. Across 100 tests, the average accuracy scores are as follows: 
  
KGE(200): 0.6339331689947959 
DistilBERTsentence(256): 0.6282936181867981 
KGE + DistilBERTsentence(200+256): 0.642925225965489 
GNN+DistilBERTsentence(64+256): 0.637518488085456 
GNN(64): 0.6352999178307314 
KGE+GNN+DistilBERT(520): 0.646296904957546 
random264+DistilBERT(520): 0.6243577102163791 
  
KGE+GNN+DistilBERT achieves the best average performance, KGE+DistilBERT is the 
second best and GNN+DistilBERT achieves the third. Across all test distributions of the 
accuracy score, the performance peaked with an accuracy of 0.6686, 0.6673, and 0.6652 using 
KGE+GNN+DistilBERT. Furthermore, KGE+DistilBERT also demonstrates a good performance 
with two peaks at 0.6605 and 0.6598 accuracy. GNN+DistilBERT also archives some good 
outcomes with one peak at 0.658. The results demonstrate DistilBERT enriched with graph 
embeddings, whether it is KGE, GNN, or KGE+GNN because at every single test, these three 
variations consistently outperform the classification given only the DistilBERT embeddings.  
  
I also added a random vector of 265 + DistilBERT to make sure that it is not solely due to the 
increasing dimensionality that the classification model is able to be more expressive to capture 
nonlinear patterns. However, random265+DistilBERT performs the worst on average, which 
means that KGE and GNN are encoding structural and relational information that boosted the 
performance.  
The following diagram samples 40 tests from the random seed tests to showcase the 
performances and the peaks: 
Throughout my undergraduate years, I have conducted an extensive amount of research in the 
field of CV and NLP. Currently, I am writing two first-author papers and preparing for 
submission during winter. The first one is Denoising Triadic-Interactions for Robot Interjection 
Analysis. I led the project at the MIT Media Lab Personal Robotics Group, aiming to improve 
the robot’s response in a parent-child interaction with robot interjection. I led the project to 
develop a multimodal algorithm yoloDeepface and integrated algorithms including distance 
interpolation and memory loading to clearly differentiate parent and child from others in 
complex videos and achieve 95% accuracy. We are preparing for submission to ICMI 24’. The 
second first-author publication is BertKG-ComplexEvent Representation Learning. I proposed a 
novel architecture combining language and graph modalities to enhance LM with a 
comprehensive understanding and logical inference skills. I am preparing paper submissions to 
computational social science conferences and journals. 
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The classification task demonstrates that the graph-enhanced representation has consistent 
improvement. However, it does not demonstrate a significant improvement in terms of accuracy 
score difference. 
 
2. Link Prediction Performance 
 
Link Prediction asks the system whether there are potential linkages (edges) between nodes. 
Specifically, using the encodings generated through the training, the decoder component makes 
link predictions (i.e. binary classifications) on all the edges including the negative links using 
node embeddings. It calculates a dot product of the node embeddings from a pair of nodes on 
each edge. Then, it aggregates the values across the embedding dimension and creates a single 
value on every edge that represents the probability of edge existence. 
Ablation Experiments: For the ablation experiments, I extracted the encodings trained by the 
GNN and replaced them with several variations before feeding them into the decoder module, 
specifically including BERT, GNN, KGE, BERT+KGE, BERT+GNN, GNN+KGE+DistilBERT. 
The results demonstrate significant improvement: the decoder that uses DistilBERT embeddings 
achieves around 50% accuracy, while the concatenated GNN+DistilBERT+KGE achieves an 
accuracy of 76.5%, which is a 26.5% increase that demonstrates significant improvement. 
Interestingly, GNN alone achieves 78%, which is roughly the same performance as the proposed 
GNN+DistilBERT+KGE representation by 1.5%. The competitive performance is reasonable 
considering that the GNN itself is enhanced with rich semantic meanings because the node 
features are the DistilBERT reduced sentence embeddings. 
 I also benchmarked the result with an embedding of random-(128,)-vector+DistilBERT to make 
sure that it is not solely due to the increasing dimensionality that the classification model is able 
to be more expressive to capture nonlinear patterns. However, random+DistilBERT obtains an 
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accuracy of around 50.9%, which means that the graph module encodes structural and relational 
information that boosts the performance.  
 

 

 

 
 
V. Conclusion 
 
In conclusion, the proposed architecture that combines the rich semantic information and the 
interrelated causal relations demonstrates significant and consistent improvements in complex 
event representation. Classification based on the dataset that I constructed demonstrates a 
consistent improvement across each random seed test; the second evaluation through link 
prediction based on the synthetic negative edges sampled from the provided adjacency 
demonstrates a significant increase of around 26% accuracy score. The results showcased the 
significance of combining language and graph modules to obtain a better representation of 
complex events.  
The discrepancies between the two evaluation schemes are worth further investigations; 
specifically, the first classification evaluation demonstrates a 2% accuracy increase, while the 
link prediction demonstrates a 26% accuracy increase. The only thing different was that my 
dataset consisted of a good portion of unrelated event pairs instead of merely “reversed edges” – 
B to A when A actually causes B. Therefore, it is plausible that GNN learns the antisymmetric 
relations well but is less clear when classifying the relations between unfamiliar nodes. I believe 
conducting more experiments using the close pair, middle pair, and distant pair datasets 
separately may be able to give interpretable outcomes to this discrepancy, 
Furthermore, I attempted to conduct clustering experiments to uncover “how” these concatenated 
language and graph representations are structured in the high-dimensional space. I specifically 
wanted to investigate the underlying reason for how the structures allow improvement in the 
classification and link prediction performance because the benchmark tests against 
random+DistilBERT demonstrate that there is inherent structural information that has been 
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encoded when enhanced with the graph module. Specifically, I implemented Hierarchical 
DBSCAN clustering and applied t-SNE to visualize the result. However, I was unable to capture 
meaningful clusters and the data seemed disproportionate. The absence of meaningful clusters in 
Hierarchical DBSCAN and t-SNE visualization may be due to the sensitivity of DBSCAN to 
noise and outliers, potential issues with data scaling affecting DBSCAN's performance, 
limitations in capturing meaningful relationships when dealing with high-dimensional data in 
t-SNE. Further research would need to be conducted to further investigate the embedded 
structure in the high-dimensional space. 
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The peaks are never the random / BERTsentence embeddings. 
Conclusion 
 

-​ A small set of 43000 events. But this webscraping  
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Events in the human history are linked with casualty and correlation. For example, WWI leads to 
WWII. Essentially, domain-specific professional knolwge capture these relationships and the 
research aims to enhance LLMs the ability to store these causal relationships.  
I constructed a causally-linked event graph through ML-backboned recursive web-scraping from 

Wikipedia. Contextualized on the dataset, CoT prompting demonstrated that Llama and GPT-3.5 have 

~50% accuracy at causal prediction tasks. In order to mitigate such deficiency for LMs, I proposed a 

novel architecture combining language and graph modalities: the semantic information is stored in a 

dimensionality-reduced pretrained DistilBERT embedding for a sentence consisting the event’s keywords; 

the relational information between events are captured by the GNN and KGE that I trained on the dataset. 

I used a graph link prediction task for evaluation: the multimodal representation achieved a 78% accuracy 

rate in differentiating true versus synthetic fake causal relations, outperforming the DistilBERT 

representation by 28%. 
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GRAPHS: 

Formula for ComplX: 

 
GNN training graph: 
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Python Files Needed: 
1.Prompt GPT and Llama 
2.make_dataset.py: this IV. make test set  
 
 
CSV files needed 
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